Contacts	R12	R81/R91	XR12
Contact material/contact gap	$\mathrm{AgSnO}_{2} / 3 \mathrm{~mm}$	$\mathrm{AgSnO}_{2} / 2 \mathrm{~mm}$	$\mathrm{AgSnO}_{2} / 3 \mathrm{~mm}{ }^{1)}$
Spacing of control connections/contact	$>6 \mathrm{~mm}$	$>6 \mathrm{~mm}$	$>6 \mathrm{~mm}$
Test voltage contact/contact Test voltage control connections/contact	$\begin{aligned} & 2000 \mathrm{~V} \\ & 4000 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2000 \mathrm{~V} \\ & 4000 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2000 \mathrm{~V} \\ & 4000 \mathrm{~V} \end{aligned}$
Rated switching capacity	$\begin{aligned} & 16 \mathrm{~A} / 250 \mathrm{~V} \mathrm{AC} \\ & 10 \mathrm{~A} / 400 \mathrm{~V} \text { AC } \end{aligned}$	$\begin{aligned} & 10 \mathrm{~A} / 250 \mathrm{~V} \mathrm{AC} \\ & 6 \mathrm{~A} / 400 \mathrm{~V} \mathrm{AC} \end{aligned}$	$\begin{aligned} & 25 \mathrm{~A} / 250 \mathrm{~V} \mathrm{AC} \\ & 16 \mathrm{~A} / 400 \mathrm{~V} \mathrm{AC} \end{aligned}$
Incandescent lamp and halogen lamp load ${ }^{2)}$ 230 V	2300W	2300W	2300W
Fluorescent lamp load with KVG* in lead-lag circuit or non compensated	2300 VA	2300VA	3600VA
Fluorescent lamp load wih KVG* shunt-compensated or with EVG*	500 VA	500 VA	1000 VA
Compact fluorescent lamps with EVG* and energy saving lamps ESL	1 on $\leq 140 \mathrm{~A} / 10 \mathrm{~ms}^{3}{ }^{\text {3 }}$	$1 \mathrm{on} \leq 70 \mathrm{~A} / 10 \mathrm{~ms}{ }^{3}$	1 on $\leq 140 \mathrm{~A} / 10 \mathrm{~ms}^{3}{ }^{3}$
HQL and HQ I non compensated	500 W	-	500 W
Max. switching current DC1: 12V/24V DC	8A	8A	12 A
Life at rated load, $\cos \varphi=1$ or incandescent lamps 1000 W at $100 / \mathrm{h}$	$>10^{5}$	$>10^{5}$	$>10^{5}$
Life at rated load, $\cos \varphi=0.6$ at $100 / \mathrm{h}$	$>4 \times 10^{4}$	$>4 \times 10^{4}$	$>4 \times 10^{4}$
Max. operating cycles	103/h	103/h	103/h
Closing time	10-20 ms	10-20 ms	10-20 ms
Opening time	$5-15 \mathrm{~ms}$	$5-15 \mathrm{~ms}$	$5-15 \mathrm{~ms}$
Switch position indication	yes	yes	yes
Manual control	yes	yes	yes
Maximum conductor cross-section	$6 \mathrm{~mm}^{2}$	$4 \mathrm{~mm}^{2}$	$6 \mathrm{~mm}^{2}$
Two conductors of same cross-section	$2.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$
Screw head	slotted/crosshead, pozidriv	slotted/crosshead, pozidriv	slotted/crosshead, pozidriv
Type of enclosure/terminals	IP50/IP20	IP50/IP20	IP50/IP20
Solenoid System			
Time on	100\% ${ }^{4)}$	100\%	100\% ${ }^{4)}$
Max./min. temperature at mounting location	$+50^{\circ} \mathrm{C} /-5^{\circ} \mathrm{C}$	$+50^{\circ} \mathrm{C} /-5^{\circ} \mathrm{C}$	$+50^{\circ} \mathrm{C} /-5^{\circ} \mathrm{C}$
Control voltage range	0.9 to 1.1 l rated voltage	0.9 to 1.1 x rated voltage	0.9 to $1.1 \times$ rated voltage
Coil power loss AC+DC $\pm 20 \%$	$\begin{aligned} & \text { 1- and 2-pole } 1.9 \mathrm{~W} \\ & \text { 4-pole } 4 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { R81: } 5 \mathrm{~W} \\ & \text { R91: } 2.5 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 1- and 2-pole } 1.9 \mathrm{~W} \\ & \text { 4-pole 4W } \end{aligned}$
Total power loss with continous excitation at rated voltage and rated contact load	1 - pole $4 W$, 2-pole 6 W 4 -pole 12 W	$\begin{aligned} & \text { 1-pole } 7 \mathrm{~W} \\ & \text { 2-pole } 9 \mathrm{~W} \end{aligned}$	1-pole 4W, 2-pole 6 W 4 -pole 12 W
Max. parallel capacitance (length) of control lead	$0.06 \mu \mathrm{~F}$ (approx. 200 m)	$0.06 \mu \mathrm{~F}$ (approx. 200 m)	$0.06 \mu \mathrm{~F}$ (approx. 200 m)
Max. voltage induced at the control inputs	0.2 r rated voltage	0.2 x rated voltage	0.2 x rated voltage

* EVG = electronic ballast units; KVG = conventional ballast units
${ }^{1)}$ Conctact distance of the NC contacts 1.2 mm .
${ }^{2)}$ Contact spacing of NC contacts 1.2 mm .
${ }^{3)}$ A 40 -fold inrush current must be calculated for electronic ballast devices. For steady loads of 1200W or 600W use the current-limiting relay SBR12 or SBR61. See chapter 14, page 14-8.
${ }^{4)}$ Whenever several impulse switches are continuously energised make sure there is adequate ventilation as a function of the calculated power loss.

